;
headline photo

Biografi Al-Khawarizmi

Jumat, 25 Desember 2009



Nama Asli dari al-Khawarizmi ialah Muhammad Ibn Musa al-khawarizmi. Selain itu beliau dikenali sebagai Abu Abdullah Muhammad bin Ahmad bin Yusoff. Al-Khawarizmi dikenal di Barat sebagai al-Khawarizmi, al-Cowarizmi, al-Ahawizmi, al-Karismi, al-Goritmi, al-Gorismi dan beberapa cara ejaan lagi. Beliau dilahirkan di Bukhara.Tahun 780-850M adalah zaman kegemilangan al-Khawarizmi. al-Khawarizmi telah wafat antara tahun 220 dan 230M. Ada yang mengatakan al-Khawarizmi hidup sekitar awal pertengahan abad ke-9M. Sumber lain menegaskan beliau hidup di Khawarism, Usbekistan pada tahun 194H/780M dan meninggal tahun 266H/850M di Baghdad.

Dalam pendidikan telah dibuktikan bahawa al-Khawarizmi adalah seorang tokoh Islam yang berpengetahuan luas. Pengetahuan dan keahliannya bukan hanya dalam bidang syariat tapi di dalam bidang falsafah, logika, aritmatika, geometri, musik, ilmu hitung, sejarah Islam dan kimia.

Al-Khawarizmi sebagai guru aljabar di Eropa

Beliau telah menciptakan pemakaian Secans dan Tangen dalam penyelidikan trigonometri dan astronomi. Dalam usia muda beliau bekerja di bawah pemerintahan Khalifah al-Ma’mun, bekerja di Bayt al-Hikmah di Baghdad. Beliau bekerja dalam sebuah observatory yaitu tempat belajar matematika dan astronomi. Al-Khawarizmi juga dipercaya untuk memimpin perpustakaan khalifah. Beliau pernah memperkenalkan angka-angka India dan cara-cara perhitungan India pada dunia Islam. Beliau juga merupakan seorang penulis Ensiklopedia dalam berbagai disiplin. Al-Khawarizmi adalah seorang tokoh yang pertama kali memperkenalkan aljabar dan hisab. Banyak lagi ilmu pengetahuan yang beliau pelajari dalam bidang matematika dan menghasilkan konsep-konsep matematika yang begitu populer yang masih digunakan sampai sekarang.

PERANAN DAN SUMBANGAN AL-KHAWARIZMI

Sumbangsihnya dalam bentuk hasil karya diantaranya ialah :

1. Al-Jabr wa’l Muqabalah : beliau telah mencipta pemakaian secans dan tangens dalam penyelidikan trigonometri dan astronomi.

2.Hisab al-Jabr wa al-Muqabalah : Beliau telah mengajukan contoh-contoh persoalan matematika dan mengemukakan 800 buah masalah yang sebagian besar merupakan persoalan yang dikemukakan oleh Neo. Babylian dalam bentuk dugaan yang telah dibuktikan kebenarannya oleh al-Khawarizmi.

3.Sistem Nomor : Beliau telah memperkenalkan konsep sifat dan ia penting dalam sistem Nomor pada zaman sekarang. Karyanya yang satu ini memuat Cos, Sin dan Tan dalam penyelesaian persamaan trigonometri , teorema segitiga sama kaki dan perhitungan luas segitiga, segi empat dan lingkaran dalam geometri.

Banyak lagi konsep dalam matematika yang telah diperkenalkan al-khawarizmi . Bidang astronomi juga membuat al-Khawarizmi terkenal. Astronomi dapat diartikan sebagai ilmu falaq [pengetahuan tentang bintang-bintang yang melibatkan kajian tentang kedudukan, pergerakan, dan pemikiran serta tafsiran yang berkaitan dengan bintang].

Pribadi al-Khawarizmi

Kepribadian al-Khawarizmi telah diakui oleh orang Islam maupun dunia Barat. Ini dapat dibuktikan bahawa G.Sarton mengatakan bahwa“pencapaian-pencapaian yang tertinggi telah diperoleh oleh orang-orang Timur….” Dalam hal ini Al-Khawarizmi. Tokoh lain, Wiedmann berkata…." al-Khawarizmi mempunyai kepribadian yang teguh dan seorang yang mengabdikan hidupnya untuk dunia sains".

Beberapa cabang ilmu dalam Matematika yang diperkenalkan oleh al-Khawarizmi seperti: geometri, aljabar, aritmatika dan lain-lain. Geometri merupakan cabang kedua dalam matematika. Isi kandungan yang diperbincangkan dalam cabang kedua ini ialah asal-usul geometri dan rujukan utamanya ialah Kitab al-Ustugusat[The Elements] hasil karya Euklid : geometri dari segi bahasa berasal daripada perkataan yunani iaitu ‘geo’ yang berarti bumi dan ‘metri’ berarti pengukuran. Dari segi ilmu, geometri adalah ilmu yang mengkaji hal yang berhubungan dengan magnitud dan sifat-sifat ruang. Geometri ini dipelajari sejak zaman firaun [2000SM]. Kemudian Thales Miletus memperkenalkan geometri Mesir kepada Yunani sebagai satu sains dalam kurun abad ke 6 SM. Seterusnya sarjana Islam telah menyempurnakan kaidah pendidikan sains ini terutama pada abad ke9M.

Algebra/aljabar merupakan nadi matematika. Karya Al-Khawarizmi telah diterjemahkan oleh Gerhard of Gremano dan Robert of Chaster ke dalam bahasa Eropa pada abad ke-12. sebelum munculnya karya yang berjudul ‘Hisab al-Jibra wa al Muqabalah yang ditulis oleh al-Khawarizmi pada tahun 820M. Sebelum ini tak ada istilah aljabar.
Muḥammad bin Mūsā al-Khawārizmī
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Muhammad bin Mūsā al-Khwārizmī

Muḥammad bin Mūsā al-Khawārizmī (Arab: محمد بن موسى الخوارزمي) adalah seorang ahli matematika, astronomi, astrologi, dan geografi yang berasal dari Persia. Lahir sekitar tahun 780 di Khwārizm (sekarang Khiva, Uzbekistan) dan wafat sekitar tahun 850. Hampir sepanjang hidupnya, ia bekerja sebagai dosen di Sekolah Kehormatan di Baghdad
Buku pertamanya, al-Jabar, adalah buku pertama yang membahas solusi sistematik dari linear dan notasi kuadrat. Sehingga ia disebut sebagai Bapak Aljabar. Translasi bahasa Latin dari Aritmatika beliau, yang memperkenalkan angka India, kemudian diperkenalkan sebagai Sistem Penomoran Posisi Desimal di dunia Barat pada abad ke 12. Ia merevisi dan menyesuaikan Geografi Ptolemeus sebaik mengerjakan tulisan-tulisan tentang astronomi dan astrologi.
Kontribusi beliau tak hanya berdampak besar pada matematika, tapi juga dalam kebahasaan. Kata Aljabar berasal dari kata al-Jabr, satu dari dua operasi dalam matematika untuk menyelesaikan notasi kuadrat, yang tercantum dalam buku beliau. Kata logarisme dan logaritma diambil dari kata Algorismi, Latinisasi dari nama beliau. Nama beliau juga di serap dalam bahasa Spanyol Guarismo dan dalam bahasa Portugis, Algarismo yang berarti digit.

Biografi
Sedikit yang dapat diketahui dari hidup beliau, bahkan lokasi tempat lahirnya sekailpun. Nama beliau mungkin berasal dari Khwarizm (Khiva) yang berada di Provinsi Khurasan pada masa kekuasaan Bani Abbasiyah (sekarang Xorazm, salah satu provinsi Uzbekistan). Gelar beliau adalah Abū ‘Abd Allāh (Arab: أبو عبد الله) atau Abū Ja’far.
Sejarawan al-Tabari menamakan beliau Muhammad bin Musa al-Khwārizmī al-Majousi al-Katarbali (Arab: محمد بن موسى الخوارزميّ المجوسيّ القطربّليّ). Sebutan al-Qutrubbulli mengindikasikan beliau berasal dari Qutrubbull, kota kecil dekat Baghdad.
Tentang agama al-Khawārizmī', Toomer menulis:
Sebutan lain untuk beliau diberikan oleh al-Ṭabarī, "al-Majūsī," dapat dilihat mengindikasikan ia adalah pengikut Zoroaster.Ini mungkin terjadi pada orang yang berasal dari Iran]]. Tetapi, kemudian buku Al-Jabar beliau menunujukkan beliau adalah seorang Muslim Ortodok,jadi sebutan Al-Tabari ditujukan pada saat ia muda, ia beragama Majusi.
Dalam Kitāb al-Fihrist Ibnu al-Nadim, kita temukan sejarah singkat beliau, bersama dengan karya-karya tulis beliau. Al-Khawarizmi menekuni hampir seluruh pekerjaannya antara 813-833. setelah Islam masuk ke Persia, Baghdad menjadi pusat ilmu dan perdagangan, dan banyak pedagang dan ilmuwan dari Cina dan India berkelana ke kota ini, yang juga dilakukan beliau. Dia bekerja di Baghdad pada Sekolah Kehormatan yang didirikan oleh Khalifah Bani Abbasiyah Al-Ma'mun, tempat ia belajar ilmu alam dan matematika, termasuk mempelajari terjemahan manuskrip Sanskerta dan Yunani.
Karya
Buku I - Aljabar

Sebuah halaman dari Aljabar al-Khwārizmī
al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala (Arab: الكتاب المختصر في حساب الجبر والمقابلة Buku Rangkuman Kalkulasi dengan Melengkapkan dan Menyeimbangkan) adalah buku matematika yang ditulis tahun 830.
Buku 2 - Dixit algorizmi
Buku kedua besar beliau adalah tentang aritmatika, yang bertahan dalam Bahasa Latin, tapi hilang dari Bahasa Arab yang aslinya. Translasi dilakukan pada abad ke-12 oleh Adelard of Bath, yang juga menerjemahkan tabel astronomi pada 1126.
Buku 3 - Rekonstruksi Planetarium
Peta abad ke-15 berdasarkan Ptolemeus sebagai perbandingan.
Buku ketiga beliau yang terkenal adalah Kitāb ṣūrat al-Arḍ (Bhs.Arab: كتاب صورة الأرض "Buku Pemandangan Dunia" atau "Kenampakan Bumi" diterjemahkan oleh Geography), yang selesai pada 833 adalah revisi dan penyempurnaan Geografi Ptolemeus, terdiri dari daftar 2402 koordinat dari kota-kota dan tempat geografis lainnya mengikuti perkembangan umum.
Buku 4 - Astronomi
Kampus Corpus Christi MS 283
Buku Zīj al-sindhind (Arab: زيج "tabel astronomi”) adalah karya yang terdiri dari 37 simbol pada kalkulasi kalender astronomi dan 116 tabel dengan kalenderial, astronomial dan data astrologial sebaik data yang diakui sekarang.
Buku 5 - Kalender Yahudi
Al-Khawārizmī juga menulis tentang Penanggalan Yahudi (Risāla fi istikhrāj taʾrīkh al-yahūd "Petunjuk Penanggalan Yahudi"). Yang menerangkan 19-tahun siklus interkalasi, hukum yang mengatur pada hari apa dari suatu minggu bulan Tishrī dimulai; memperhitungkan interval antara Era Yahudi(penciptaan Adam) dan era Seleucid ; dan memberikan hukum tentang bujur matahari dan bulan menggunakan Kalender Yahudi. Sama dengan yang ditemukan oleh al-Bīrūnī dan Maimonides.
Leonardo Fibonacci
Leonardo Pisano is better known by his nickname Fibonacci. He was the son of Guilielmo and a member of the Bonacci family. Fibonacci himself sometimes used the name Bigollo, which may mean good-for-nothing or a traveller. As stated in [1]:-
Did his countrymen wish to express by this epithet their disdain for a man who concerned himself with questions of no practical value, or does the word in the Tuscan dialect mean a much-travelled man, which he was?
Fibonacci was born in Italy but was educated in North Africa where his father, Guilielmo, held a diplomatic post. His father's job was to represent the merchants of the Republic of Pisa who were trading in Bugia, later called Bougie and now called Bejaia. Bejaia is a Mediterranean port in northeastern Algeria. The town lies at the mouth of the Wadi Soummam near Mount Gouraya and Cape Carbon. Fibonacci was taught mathematics in Bugia and travelled widely with his father and recognised the enormous advantages of the mathematical systems used in the countries they visited. Fibonacci writes in his famous book Liber abaci (1202):-
When my father, who had been appointed by his country as public notary in the customs at Bugia acting for the Pisan merchants going there, was in charge, he summoned me to him while I was still a child, and having an eye to usefulness and future convenience, desired me to stay there and receive instruction in the school of accounting. There, when I had been introduced to the art of the Indians' nine symbols through remarkable teaching, knowledge of the art very soon pleased me above all else and I came to understand it, for whatever was studied by the art in Egypt, Syria, Greece, Sicily and Provence, in all its various forms.
Fibonacci ended his travels around the year 1200 and at that time he returned to Pisa. There he wrote a number of important texts which played an important role in reviving ancient mathematical skills and he made significant contributions of his own. Fibonacci lived in the days before printing, so his books were hand written and the only way to have a copy of one of his books was to have another hand-written copy made. Of his books we still have copies of Liber abaci (1202), Practica geometriae (1220), Flos (1225), and Liber quadratorum. Given that relatively few hand-made copies would ever have been produced, we are fortunate to have access to his writing in these works. However, we know that he wrote some other texts which, unfortunately, are lost. His book on commercial arithmetic Di minor guisa is lost as is his commentary on Book X of Euclid's Elements which contained a numerical treatment of irrational numbers which Euclid had approached from a geometric point of view.
One might have thought that at a time when Europe was little interested in scholarship, Fibonacci would have been largely ignored. This, however, is not so and widespread interest in his work undoubtedly contributed strongly to his importance. Fibonacci was a contemporary of Jordanus but he was a far more sophisticated mathematician and his achievements were clearly recognised, although it was the practical applications rather than the abstract theorems that made him famous to his contemporaries.
The Holy Roman emperor was Frederick II. He had been crowned king of Germany in 1212 and then crowned Holy Roman emperor by the Pope in St Peter's Church in Rome in November 1220. Frederick II supported Pisa in its conflicts with Genoa at sea and with Lucca and Florence on land, and he spent the years up to 1227 consolidating his power in Italy. State control was introduced on trade and manufacture, and civil servants to oversee this monopoly were trained at the University of Naples which Frederick founded for this purpose in 1224.
Frederick became aware of Fibonacci's work through the scholars at his court who had corresponded with Fibonacci since his return to Pisa around 1200. These scholars included Michael Scotus who was the court astrologer, Theodorus Physicus the court philosopher and Dominicus Hispanus who suggested to Frederick that he meet Fibonacci when Frederick's court met in Pisa around 1225.
Johannes of Palermo, another member of Frederick II's court, presented a number of problems as challenges to the great mathematician Fibonacci. Three of these problems were solved by Fibonacci and he gives solutions in Flos which he sent to Frederick II. We give some details of one of these problems below.
After 1228 there is only one known document which refers to Fibonacci. This is a decree made by the Republic of Pisa in 1240 in which a salary is awarded to:-
... the serious and learned Master Leonardo Bigollo ....
This salary was given to Fibonacci in recognition for the services that he had given to the city, advising on matters of accounting and teaching the citizens.
Liber abaci, published in 1202 after Fibonacci's return to Italy, was dedicated to Scotus. The book was based on the arithmetic and algebra that Fibonacci had accumulated during his travels. The book, which went on to be widely copied and imitated, introduced the Hindu-Arabic place-valued decimal system and the use of Arabic numerals into Europe. Indeed, although mainly a book about the use of Arab numerals, which became known as algorism, simultaneous linear equations are also studied in this work. Certainly many of the problems that Fibonacci considers in Liber abaci were similar to those appearing in Arab sources.
The second section of Liber abaci contains a large collection of problems aimed at merchants. They relate to the price of goods, how to calculate profit on transactions, how to convert between the various currencies in use in Mediterranean countries, and problems which had originated in China.
A problem in the third section of Liber abaci led to the introduction of the Fibonacci numbers and the Fibonacci sequence for which Fibonacci is best remembered today:-
A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from the second month on becomes productive?
The resulting sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... (Fibonacci omitted the first term in Liber abaci). This sequence, in which each number is the sum of the two preceding numbers, has proved extremely fruitful and appears in many different areas of mathematics and science. The Fibonacci Quarterly is a modern journal devoted to studying mathematics related to this sequence.
Many other problems are given in this third section, including these types, and many many more:
A spider climbs so many feet up a wall each day and slips back a fixed number each night, how many days does it take him to climb the wall.
A hound whose speed increases arithmetically chases a hare whose speed also increases arithmetically, how far do they travel before the hound catches the hare.
Calculate the amount of money two people have after a certain amount changes hands and the proportional increase and decrease are given.
There are also problems involving perfect numbers, problems involving the Chinese remainder theorem and problems involving summing arithmetic and geometric series.
Fibonacci treats numbers such as √10 in the fourth section, both with rational approximations and with geometric constructions.
A second edition of Liber abaci was produced by Fibonacci in 1228 with a preface, typical of so many second editions of books, stating that:-
... new material has been added [to the book] from which superfluous had been removed...
Another of Fibonacci's books is Practica geometriae written in 1220 which is dedicated to Dominicus Hispanus whom we mentioned above. It contains a large collection of geometry problems arranged into eight chapters with theorems based on Euclid's Elements and Euclid's On Divisions. In addition to geometrical theorems with precise proofs, the book includes practical information for surveyors, including a chapter on how to calculate the height of tall objects using similar triangles. The final chapter presents what Fibonacci called geometrical subtleties [1]:-
Among those included is the calculation of the sides of the pentagon and the decagon from the diameter of circumscribed and inscribed circles; the inverse calculation is also given, as well as that of the sides from the surfaces. ... to complete the section on equilateral triangles, a rectangle and a square are inscribed in such a triangle and their sides are algebraically calculated ...
In Flos Fibonacci gives an accurate approximation to a root of 10x + 2x2 + x3 = 20, one of the problems that he was challenged to solve by Johannes of Palermo. This problem was not made up by Johannes of Palermo, rather he took it from Omar Khayyam's algebra book where it is solved by means of the intersection of a circle and a hyperbola. Fibonacci proves that the root of the equation is neither an integer nor a fraction, nor the square root of a fraction. He then continues:-
And because it was not possible to solve this equation in any other of the above ways, I worked to reduce the solution to an approximation.
Without explaining his methods, Fibonacci then gives the approximate solution in sexagesimal notation as 1.22.7.42.33.4.40 (this is written to base 60, so it is 1 + 22/60 + 7/602 + 42/603 + ...). This converts to the decimal 1.3688081075 which is correct to nine decimal places, a remarkable achievement.
Liber quadratorum, written in 1225, is Fibonacci's most impressive piece of work, although not the work for which he is most famous. The book's name means the book of squares and it is a number theory book which, among other things, examines methods to find Pythogorean triples. Fibonacci first notes that square numbers can be constructed as sums of odd numbers, essentially describing an inductive construction using the formula n2 + (2n+1) = (n+1)2. Fibonacci writes:-
I thought about the origin of all square numbers and discovered that they arose from the regular ascent of odd numbers. For unity is a square and from it is produced the first square, namely 1; adding 3 to this makes the second square, namely 4, whose root is 2; if to this sum is added a third odd number, namely 5, the third square will be produced, namely 9, whose root is 3; and so the sequence and series of square numbers always rise through the regular addition of odd numbers.
To construct the Pythogorean triples, Fibonacci proceeds as follows:-
Thus when I wish to find two square numbers whose addition produces a square number, I take any odd square number as one of the two square numbers and I find the other square number by the addition of all the odd numbers from unity up to but excluding the odd square number. For example, I take 9 as one of the two squares mentioned; the remaining square will be obtained by the addition of all the odd numbers below 9, namely 1, 3, 5, 7, whose sum is 16, a square number, which when added to 9 gives 25, a square number.
Fibonacci also proves many interesting number theory results such as:
there is no x, y such that x2 + y2 and x2 - y2 are both squares.
and x4 - y4 cannot be a square.
He defined the concept of a congruum, a number of the form ab(a + b)(a - b), if a + b is even, and 4 times this if a + b is odd. Fibonacci proved that a congruum must be divisible by 24 and he also showed that for x, c such that x2 + c and x2 - c are both squares, then c is a congruum. He also proved that a square cannot be a congruum.
As stated in [2]:-
... the Liber quadratorum alone ranks Fibonacci as the major contributor to number theory between Diophantus and the 17th-century French mathematician Pierre de Fermat.
Fibonacci's influence was more limited than one might have hoped and apart from his role in spreading the use of the Hindu-Arabic numerals and his rabbit problem, Fibonacci's contribution to mathematics has been largely overlooked. As explained in [1]:-
Direct influence was exerted only by those portions of the "Liber abaci" and of the "Practica" that served to introduce Indian-Arabic numerals and methods and contributed to the mastering of the problems of daily life. Here Fibonacci became the teacher of the masters of computation and of the surveyors, as one learns from the "Summa" of Luca Pacioli ... Fibonacci was also the teacher of the "Cossists", who took their name from the word 'causa' which was first used in the West by Fibonacci in place of 'res' or 'radix'. His alphabetic designation for the general number or coefficient was first improved by Viète ...
Fibonacci's work in number theory was almost wholly ignored and virtually unknown during the Middle ages. Three hundred years later we find the same results appearing in the work of Maurolico.
Biografi imam ali
Beliau adalah Al-Imam Ali Zainal Abidin bin Hussein bin Ali bin Abi Thalib (semoga Allah meridhoi mereka semua). Beliau dijuluki dengan julukan Abal Hasan atau Abal Husain. Beliau juga dijuluki dengan As-Sajjad (orang yang ahli sujud).
Beliau adalah seorang yang ahli ibadah dan panutan penghambaan dan ketaatan kepada Allah. Beliau meninggalkan segala sesuatu kecuali Tuhannya dan berpaling dari yang selain-Nya, serta yang selalu menghadap-Nya. Hati dan anggota tubuhnya diliputi ketenangan karena ketinggian makrifahnya kepada Allah, rasa hormatnya dan rasa takutnya kepada-Nya. Itulah sifat-sifat beliau, Al-Imam Ali Zainal Abidin.
Beliau dilahirkan di kota Madinah pada tahun 33 H, atau dalam riwayat lain ada yang mengatakan 38 H. Beliau adalah termasuk generasi tabi'in. Beliau juga seorang imam agung. Beliau banyak meriwayatkan hadits dari ayahnya (Al-Imam Husain), pamannya Al-Imam Hasan, Jabir, Ibnu Abbas, Al-Musawwir bin Makhromah, Abu Hurairah, Shofiyyah, Aisyah, Ummu Kultsum, serta para ummahatul mukminin/isteri-isteri Nabi SAW (semoga Allah meridhoi mereka semua). Beliau, Al-Imam Ali Zainal Abidin, mewarisi sifat-sifat ayahnya (semoga Allah meridhoi keduanya) di didalam ilmu, zuhud dan ibadah, serta mengumpulkan keagungan sif
Biografi pythagoras
Phytagoras lahir pada tahun 570 SM, di pulau Samos, di daerah Ionia. Pythagoras (582 SM – 496 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya.Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.

Dalam tradisi Yunani, diceritakan bahwa ia banyak melakukan perjalanan, diantaranya ke Mesir. Perjalanan Phytagoras ke Mesir merupakan salah satu bentuk usahanya untuk berguru, menimba ilmu, pada imam-imam di Mesir. Konon, karena kecerdasannya yang luar biasa, para imam yang dikunjunginya merasa tidak sanggup untuk menerima Phytagoras sebagai murid. Namun, pada akhirnya ia diterima sebagai murid oleh para imam di Thebe. Disini ia belajar berbagai macam misteri. Selain itu, Phytagoras juga berguru pada imam-imam Caldei untuk belajar Astronomi, pada para imam Phoenesia untuk belajar Logistik dan Geometri, pada para Magi untuk belajar ritus-ritus mistik, dan dalam perjumpaannya dengan Zarathustra, ia belajar teori perlawanan.

Selepas berkelana untuk mencari ilmu, Phytagoras kembali ke Samos dan meneruskan pencarian filsafatnya serta menjadi guru untuk anak Polycartes, penguasa tiran di Samos. Kira-kira pada tahun 530, karena tidak setuju dengan pemerintahan tyrannos Polycartes, ia berpindah ke kota Kroton di Italia Selatan. Di kota ini, Phytagoras mendirikan sebuah tarekat beragama yang kemudian dikenal dengan sebutan “Kaum Phytagorean.”

Kaum Phytagorean

Kaum phytagorean sangat berjasa dalam meneruskan pemikiran-pemikiran Phytagoras. Semboyan mereka yang terkenal adalah “authos epha, ipse dixit” (dia sendiri yang telah mengatakan demikian).2 Kaum ini diorganisir menurut aturan-aturan hidup bersama, dan setiap orang wajib menaatinya. Mereka menganggap filsafat dan ilmu pengetahuan sebagai jalan hidup, sarana supaya setiap orang menjadi tahir, sehingga luput dari perpindahan jiwa terus-menerus.
Diantara pengikut-pengikut Phytagoras di kemudian hari berkembang dua aliran. Yang pertama disebut akusmatikoi (akusma = apa yang telah didengar; peraturan): mereka mengindahkan penyucian dengan menaati semua peraturan secara seksama. Yang kedua disebut mathematikoi (mathesis = ilmu pengetahuan): mereka mengutamakan ilmu pengetahuan, khususnya ilmu pasti.

Pemikiran Phytagoras

Phytagoras percaya bahwa angka bukan unsur seperti udara dan air yang banyak dipercaya sebagai unsur semua benda. Angka bukan anasir alam. Pada dasarnya kaum Phytagorean menganggap bahwa pandangan Anaximandros tentang to Apeiron dekat juga dengan pandangan Phytagoras. To Apeiron melepaskan unsur-unsur berlawanan agar terjadi keseimbangan atau keadilan (dikhe). Pandangan Phytagoras mengungkapkan bahwa harmoni terjadi berkat angka. Bila segala hal adalah angka, maka hal ini tidak saja berarti bahwa segalanya bisa dihitung, dinilai dan diukur dengan angka dalam hubungan yang proporsional dan teratur, melainkan berkat angka-angka itu segala sesuatu menjadi harmonis, seimbang. Dengan kata lain tata tertib terjadi melalui angka-angka.

Salah satu peninggalan Phytagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia lah yang pertama membuktikan pengamatan ini secara matematis.[1]

Pythagoras dan murid-muridnya percaya bahwa segala sesuatu di dunia ini berhubungan dengan matematika, dan merasa bahwa segalanya dapat diprediksikan dan diukur dalam siklus beritme. Ia percaya keindahan matematika disebabkan segala fenomena alam dapat dinyatakan dalam bilangan-bilangan atau perbandingan bilangan. Ketika muridnya Hippasus menemukan bahwa \sqrt{2}, hipotenusa dari segitiga siku-siku sama kaki dengan sisi siku-siku masing-masing 1, adalah bilangan irasional, Pythagoras memutuskan untuk membunuhnya karena tidak dapat membantah bukti yang diajukan Hippasus

Mesopotamia
Mesopotamia terletak di antara dua sungai besar, Eufrat dan Tigris. Daerah yang kini menjadi Republik Irak itu di zaman dahulu disebut Mesopotamia, yang dalam bahasa Yunani berarti "(daerah) di antara sungai-sungai". Nama Mesopotamia sudah digunakan oleh para penulis Yunani dan Latin kuno, seperti Polybius (abad 2 SM) dan Strabo (60 SM-20 M).
Menurut keyakinan Kristen dan Yahudi seperti dalam Perjanjian Lama, ada usaha menghubungkan keluarga Abraham (yang lalu disebut "Bapa Orang Beriman" dan diakui oleh tiga agama monoteistik dunia, Islam, Kristen, dan Yahudi ) dengan Mesopotamia. Dalam kitab Kejadian 11,31 dikatakan, pada suatu masa keluarga Abraham berpindah dari Ur- Kasdim ke Haran sebelum akhirnya berpindah ke Kanaan (Daerah Israel dan Palestina sekarang).
Lokasi Ur-Kasdim biasanya dirujuk pada Tell el-Muqayyar, situs bekas reruntuhan Kota Ur kuno dari periode Sumeria. Tapi, banyak ahli masih meragukan usulan ini. Sedangkan Haran terletak di bagian utara Mesopotamia, di tepi Sungai Eufrat.
[sunting] Mesopotamia dalam Alkitab
Beberapa catatan lain bisa dikemukakan untuk menunjukkan hubungan antara Abraham dengan Mesopotamia. Dalam kitab Ulangan 26,3; Nabi Musa mengajak umat untuk berdoa kepada Tuhan saat mempersembahkan panen pertama dengan mengawalinya, Bapaku adalah seorang Aram, seorang pengembara.
Di tempat lain dikatakan bahwa Ishak, anak Abraham, diperintah Abraham untuk mencari istri dari daerah Aram-Mesopotamia (aram-naharayim) (Kejadian 24,2.10). Demikian juga dengan Yakub, cucu Abraham, dia disuruh pergi ke Padan-Aram untuk mendapatkan istri di sana (Kejadian 28,2). Dalam terjemahan Yunani Septuaginta, kedua nama terakhir ini disebut Mesopotamia.
Selain petunjuk yang secara eksplisit ada dalam Alkitab, masih bisa ditemukan informasi lain yang menunjukkan pengaruh Mesopotamia yang cukup kuat. Kini sudah lazim diterima bahwa kisah Penciptaan dan kisah Air Bah yang terkenal itu, yang dikisahkan pada bagian awal kitab Kejadian, sebenarnya kuat dipengaruhi sastra Mesopotamia. Biasanya ada tiga karya sastra Mesopotamia yang ditunjuk, yaitu Enuma Elish (dari abad 17 SM), Epic Gilgamesh (abad 20 SM), dan Athrahasis (abad 18-17 SM). Teks-teks itu cukup terkenal dan tersebar luas karena ditemukan dalam berbagai versi dan bahasa, seperti versi Akkadia, Sumeria, Hittit, dan Asyur.
Kemiripan antara sastra Mesopotamia dengan teks-teks Alkitab begitu mencolok sehingga seringkali disimpulkan bahwa ada ketergantungan antara keduanya. Karena teks-teks Mesopotamia berasal dari periode yang jauh lebih tua dari teks-teks Alkitab, maka tidak mengherankan jika bisa disimpulkan, teks Alkitab bergantung pada sastra Mesopotamia itu. Para penulis Israel tampaknya mengambil dan memanfaatkan teks-teks Mesopotamia itu untuk mengungkap keyakinan mereka, sekaligus menyesuaikannya dengan keyakinan itu, terutama di bidang monoteisme.
Salah satu kemungkinan datangnya pengaruh Mesopotamia dalam kitab Kejadian adalah bahwa kisah-kisah Mesopotamia dibawa ke Palestina lalu menyebar-saat terjadi perpindahan penduduk besar-besaran dari Mesopotamia yang disebabkan situasi yang agak kacau sekitar abad 19 SM. Kiranya ini juga yang menjadi konteks berpindahnya keluarga Abraham dari Ur ke Haran, lalu ke Kanaan.
Berbagai kebiasaan dan peraturan yang tercermin dalam kitab Kejadian ternyata juga menemukan banyak kesamaan dengan kebiasaan dan peraturan yang hidup di daerah Mesopotamia. Sebagai contoh, kekhawatiran Abraham karena dia tidak mendapat keturunan, karena itu harus mewariskan segala miliknya kepada abdinya yang setia, Eliezer (Kejadian 15,1-4), ternyata sejajar dengan praktek yang dilakukan masyarakat Nuzi yang mendiami sebelah timur Sungai Tigris. Hal ini bisa diketahui melalui analisis teks-teks hukum yang berlaku di Nuzi, yang berasal dari abad 15 SM.
Kisah tentang Abraham yang datang ke negeri asing lalu mengaku istrinya sebagai saudarinya (Kejadian 12,10-20) sering membingungkan orang. Tetapi, kini, dengan ditemukannya teks-teks yang berasal dari bangsa Hori di sebelah utara Mesopotamia, berdekatan dengan Haran, hal itu bisa dipahami dengan lebih baik.
Dalam masyarakat Hori, ikatan perkawinan yang paling kuat adalah jika seorang istri sekaligus mendapat status saudari secara hukum. Karena itu, sering terjadi, sesudah perkawinan diadakan upacara lain untuk mengadopsi sang istri menjadi saudari. Hal ini disahkan dengan dua dokumen. Pertama, dokumen tentang perkawinan. Kedua, berkait dengan pengangkatannya sebagai saudari.
Salah satu warisan peradaban Mesopotamia Kuno yang amat bernilai bagi umat manusia adalah kumpulan hukum yang biasa disebut Codex Hammurabi. Kumpulan hukum yang berbentuk balok batu hitam itu ditemukan di Susa tahun 1901 dalam suatu ekspedisi yang dilakukan arkeolog Perancis di bawah pimpinan M de Morgan. Pada bagian atas balok, yang kini ada di Museum Louvre, Paris, ada relief yang menggambarkan Raja Hammurabi dari Babilonia Kuno (1728-1686 SM) sedang menerima hukum dari Dewa Shamash, dewa Matahari yang juga menjadi dewa pelindung keadilan.
Perbandingan dengan kumpulan hukum yang ada dalam kitab Keluaran 21-23 menunjukkan adanya kesejajaran yang dekat. Adanya ketergantungan antara kedua kumpulan hukum itu tidak bisa ditentukan dengan pasti, tetapi pengaruh tidak langsung rasanya merupakan sesuatu yang amat masuk akal.
Codex Hammurabi, yang terdiri dari 282 pasal ditambah Prolog dan Epilog, tidak saja berpengaruh pada kumpulan hukum yang ada dalam Alkitab, tetapi juga pada sistem hukum pada periode selanjutnya. Yang menarik dan mungkin membuat kita (seharusnya) tertunduk malu adalah, kumpulan hukum itu juga mengingatkan kita bahwa sejak abad 18 SM, di Mesopotamia sudah ada seorang pemimpin besar yang sungguh-sungguh mempunyai kesadaran bahwa manusia harus diperlakukan secara adil sebagai manusia.
[sunting] Sejarah Mesopotamia
Sejarah Mesopotamia diawali dengan tumbuhnya sebuah peradaban, yang diyakini sebagai pusat peradaban tertua di dunia, oleh bangsa Sumer(ia). Bangsa Sumeria membangun beberapa kota kuno yang terkenal, yaitu Ur, Ereck, Kish, dll. Kehadiran seorang tokoh imperialistik dari bangsa lain yg juga mendiami kawasan Mesopotamia, bangsa Akkadia, dipimpin Sargon Agung, ternya melakukan sebuah penaklukan politis, tapi bukan penaklukan kultural. Bahkan dalam berbagai hal budaya Sumer dan Akkad berakulturasi, sehingga era kepemimpinan ini sering disebut Jilid Sumer-Akkad. Campur tangan Sumer tidak dapat diremehkan begitu saja, pada saat Akkad terdesak oleh bangsa Gutti, bangsa Sumer-lah yg mendukung Akkad, sehingga mereka masih dapat berkuasa di "tanah antara dua sungai" itu.


0 Komentar::

Posting Komentar

♥♥♥Eit..Eit..kayanya pengunjung mau kirim komentar nih tentang bacaan barusan..ya dah..NAME/URL juga boleh kok..Makasih yah.. ♥♥♥